One of the main causes of danger for lithium-ion cells is related to the phenomenon of thermal runaway. This is a heating reaction of the battery in use, caused by the nature of the materials used in the chemistry of the battery.
Thermal runaway is mainly caused by the solicitation of batteries under specific conditions, such as overload under adverse climatic conditions. The result of a thermal runaway of a cell depends on its level of charge and can lead in the worst case to an inflammation or even an explosion of the Lithium-Ion cell.
However, not all types of Lithium-Ion technology, due to their chemical composition, have the same sensitivity to this phenomenon.
The figure below shows the energy produced during an artificially induced thermal runaway:
Thermal Runaway Lithium-Ion – Impact of cell chemistry
In addition, it can be seen that LiFePO4 – LFP technology is is slightly subject to thermal runaway phenomena, with a temperature rise of barely 1.5°C per minute.
With this very low level of energy released, the thermal runaway of the Lithium Iron Phosphate technology is intrinsically impossible in normal operation, and even almost impossible to artificially trigger.
Combined with a BMS, Lithium Iron Phosphate (LifePO4 – LFP) is currently the most secure Lithium-Ion technology on the market.
If you have any requirements or any kind of query regarding the Lithium battery solutions for your applications, feel free to communicate with our dedicated team at any time at marketing@everexceed.com.
tags :
recent posts
scan to wechat:everexceed